Microcombustor modeling using the RBF-FD method

M. Kindelan1, V. Bayona1, E. Fernández-Tarrazo2 and M. Sánchez-Sanz2

1Mathematics Department
Universidad Carlos III de Madrid

2Fluid Mechanics Department
Universidad Carlos III de Madrid

ICERM 2017, Providence
August 6-11 2017
1 Introduction

2 Mathematical model

3 Numerical implementation

4 Validation and convergence

5 Numerical experiments

6 Conclusions
1 Introduction

2 Mathematical model

3 Numerical implementation

4 Validation and convergence

5 Numerical experiments

6 Conclusions
Micro rotary engine

Figure: Sketch of a micro-rotary engine from the Micro-Rotary Combustion Lab, University of California, Berkeley.
Microscale combustion

- nano and micro technology devices require compact and rechargeable power supplies
- at present these devices rely on batteries
- but energy density of batteries is very low:
 - 0.7 MJ/kg for lithium-ion batteries
 - several hours to recharge
- possible alternative: micro-engines
 - hydrocarbon fuels have 45 MJ/Kg of stored chemical energy
 - an efficiency of 5% in converting this energy to electricity will outperform batteries
- small-scale rotary engine (Fernández-Pello, 2002)
 - high specific power
 - low cost due to: minimum number of moving parts and no valves required for operation
 - mechanical shaft output can be directly coupled to electric motor
Mathematical model

Model

- Combustion chamber is approximated by a 2D channel.
- Bottom wall moves with velocity $\pm V$ relative to the other.
- Upper wall has a notch which modifies the combustible flow and facilitates the attachment of the flame.
- The velocity profile at the inlet is the sum of a Poiseuille flow and a Couette flow.
- When the mixture flows through the channel, a recirculation zone appears due to the notch.
- If the mixture is ignited, a steady flame might be established in the channel.
- Its structure and location depends on the flow rate which determines the attachment position, among other parameters.
Mathematical model

Micro rotary engine: flow results

Figure: Channel configurations for an inner notch (up) and an outer notch (down). The flow field is illustrated by selected streamlines.
$m = 2$, wall velocity $V = -0.5$.

Pressure

U velocity

V velocity
$m = 2$, wall velocity $V = -0.5$.

vorticity

streamlines and reaction rate

Kindelan, Bayona (UC3M)
Microcombustor
May 16
$m = 2$, wall velocity $V = -0.5.$
$m = 2$, wall velocity $V = -0.5$.

vorticity

streamlines and reaction rate
Parameters

\[m \quad \text{mass flow} \]
\[Pr = 0.7 \quad \text{Prandlt number} \]
\[Pe \quad \text{Peclet number} \]
\[Re = Pe/Pr \quad \text{Reynolds number} \]
\[Ze = 10 \quad \text{Zeldovich number} \]
\[u_p = u_p(Le) \quad S_L/U_L \]
\[\gamma = 0.7 \quad \text{heat release parameter} \]
\[V \quad \text{wall velocity} \]
\[\kappa \quad \text{heat loss coefficient} \]
\[\theta_m \quad \text{temperature in combustion chamber} \]
Thermo-diffusive model of flame propagation

The flow is assumed to be independent of the combustion, and is described by the continuity and momentum equations

\[
\begin{aligned}
\nabla \cdot \mathbf{u} &= 0 \\
(u \cdot \nabla) \mathbf{u} &= -\nabla p + \frac{1}{Pe Pr} \nabla^2 \mathbf{u}
\end{aligned}
\]

(1)

The propagation of premixed flames subject to the previous flow is described by

\[
\begin{aligned}
\frac{\partial \theta}{\partial t} + Pe (u \cdot \nabla) \theta &= \nabla^2 \theta + Pe^2 \omega (\theta, Y) \\
\frac{\partial Y}{\partial t} + Pe (u \cdot \nabla) Y &= \frac{1}{Le} \nabla^2 Y - Pe^2 \omega (\theta, Y)
\end{aligned}
\]

(2)

where \(\theta\) is the temperature, \(Y\) is the fuel mass fraction and \(\omega(\theta, Y)\) is the reaction rate,

\[
\omega(\theta, Y) = \frac{Ze^2}{2 Le u_p^2} Y \exp \left[\frac{Ze(\theta - 1)}{1 + \gamma(\theta - 1)} \right].
\]

(3)
Boundary conditions

\[y = 0 : \quad u = V, \quad v = 0, \quad \frac{\partial \theta}{\partial \vec{n}} = \kappa \text{Pe} (\theta - \theta_m), \quad \frac{\partial Y}{\partial \vec{n}} = 0, \]

\[y = y_s(x) : \quad u = v = 0, \quad \frac{\partial \theta}{\partial \vec{n}} = 0, \quad \frac{\partial Y}{\partial \vec{n}} = 0. \]

\[x \to -\infty, \quad \begin{cases}
 u(y) = -6m y^2 + (6m - V)y + V, \quad v = 0 \\
 Y = 1, \quad \theta = \theta_m
\end{cases} \]

\[x \to +\infty, \quad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = 0, \quad \frac{\partial Y}{\partial x} = \frac{\partial \theta}{\partial x} = 0. \]
Domain and initial conditions

Channel length: \([L_0, L_f]\). Width = 1. Upper boundary:

\[y_s(x) = 1 + ae^{-bx^2}, \]

where \(a\) and \(b\) control the depth and width of the notch.

Initial conditions:

- Hot spot:
 \[
 \begin{align*}
 \theta(0) & = \theta_{ig} e^{-r^2/\delta^2}, \\
 r^2 & = (x - x_{ig})^2 + (y - y_{ig})^2 \\
 Y(0) & = 1
 \end{align*}
 \]

where \(x_{ig}, y_{ig}, \theta_{ig}\) and \(\delta\) are parameters that define the location, intensity and decay rate of the initial hot spot.

- Planar flame speed in channel (for \(a = 0\)):
 \[
 \begin{align*}
 Y(0) & = \frac{1}{1 + e^{c(x+1)}} \\
 \theta(0) & = \theta_m + (1 - \theta_m)(1 - Y(x))
 \end{align*}
 \]
Numerical implementation
Navier-Stokes equations

Stream function formulation,

\[u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}; \]

the Navier-Stokes equations take the form

\[\Delta^2 \psi + \text{PePr} \left[\frac{\partial \psi}{\partial x} \frac{\partial \Delta \psi}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \Delta \psi}{\partial x} \right] = 0 \quad (7) \]

with boundary conditions

\[y = 0 : \quad \psi = 0, \quad \frac{\partial \psi}{\partial \vec{n}} = V. \]

\[y = y_s(x) : \quad \psi = m + V/2, \quad \frac{\partial \psi}{\partial \vec{n}} = 0. \]

As \(x \to -\infty \),

\[\psi(y) = -2my^3 + (3m - V/2)y^2 + Vy, \quad \frac{\partial \psi}{\partial x} = 0. \quad (8) \]

As \(x \to +\infty \),

\[\frac{\partial^2 \psi}{\partial x \partial y} = 0; \quad \frac{\partial^2 \psi}{\partial x^2} = 0. \quad (9) \]
Navier-Stokes equations

Equation (7) is solved with Newton’s method.

- Initial approximation $\psi^{(0)}$
- at each iteration compute $\psi^{(i)} = \psi^{(i-1)} + \xi$, where the correction ξ is the solution of

$$\Delta^2 \xi + PePr \left[\frac{\partial \psi^{(i-1)}}{\partial x} \frac{\partial \Delta \xi}{\partial y} - \frac{\partial \psi^{(i-1)}}{\partial y} \frac{\partial \Delta \xi}{\partial x} + \frac{\partial \xi}{\partial x} \frac{\partial \Delta \psi^{(i-1)}}{\partial y} - \frac{\partial \xi}{\partial y} \frac{\partial \Delta \psi^{(i-1)}}{\partial x} \right] = R \left(\psi^{(i-1)} \right)$$

(10)

- with boundary conditions

$$B \xi = g(x, y) - B \psi^{(i-1)}.$$

(11)

- $R \left(\psi^{(i-1)} \right)$ is the residual at iteration i

$$R \left(\psi^{(i-1)} \right) = \Delta^2 \psi^{(i-1)} + PePr \left[\frac{\partial \psi^{(i-1)}}{\partial x} \frac{\partial \Delta \psi^{(i-1)}}{\partial y} - \frac{\partial \psi^{(i-1)}}{\partial y} \frac{\partial \Delta \psi^{(i-1)}}{\partial x} \right],$$

(12)

- iterations continue until $\left\| R \left(\psi^{(i-1)} \right) \right\| \leq \epsilon$
- RBF-FD with polynomial augmentation is used to discretize differential operators.
- at each iteration equations (10) are solved using a direct solver.
Combustion equations

\[
\begin{align*}
\frac{\partial \theta}{\partial t} &= \left[\nabla^2 - \text{Pe} \, (u \cdot \nabla) \right] \theta + \text{Pe}^2 \cdot \omega(\theta, Y) \\
\frac{\partial Y}{\partial t} &= \left[\frac{1}{\text{Le}} \nabla^2 - \text{Pe} \, (u \cdot \nabla) \right] Y - \text{Pe}^2 \cdot \omega(\theta, Y)
\end{align*}
\]

(13)

- Spatial differential operators: are discretized (in a preprocessing step) using RBF-FD augmented with polynomials. \(\Rightarrow \) sparse differential matrices

\[
\begin{align*}
D_\theta &= \nabla^2 - \text{Pe} \, (u \cdot \nabla), \\
D_Y &= \frac{1}{\text{Le}} \nabla^2 - \text{Pe} \, (u \cdot \nabla).
\end{align*}
\]
Numerical implementation

Combustion equations

- Time integration: semi-implicit CN-AB2 (implicit for the linear terms and explicit for the non-linear terms).

\[
\begin{align*}
(\mathbb{I} - \frac{\Delta t}{2} D_\theta) \theta^{k+1} &= (\mathbb{I} + \frac{\Delta t}{2} D_\theta) \theta^k + \frac{\Delta t}{2} \cdot (3G^k - G^{k-1}) \\
(\mathbb{I} - \frac{\Delta t}{2} D_Y) Y^{k+1} &= (\mathbb{I} + \frac{\Delta t}{2} D_Y) Y^k - \frac{\Delta t}{2} \cdot (3G^k - G^{k-1})
\end{align*}
\]

- (14) together with boundary conditions, are solved at each time step using iterative solver BiCGSTAB with iLU as preconditoner. \(G^k\) representes the non-linear term

\[G^k = Pe^2 \cdot \omega(\theta^k, Y^k).\]

- Iterations continue until \(\|\theta^k - \theta^{k-1}\| \leq \text{tol}\) and \(\|Y^k - Y^{k-1}\| \leq \text{tol}\) (tol = 10^{-8}).
The domain is discretized using scattered nodes with an inter-nodal distance Δ controlled by a predefined function

$$\Delta = h + (h_m - h) \left[\frac{1}{1 + \exp(2(x + 3))} + \frac{1}{1 + \exp(-(x - 3))} \right],$$

where h_m and h are the inter-nodal distances away and near the notch, respectively. Ideally, a fine node distribution is used near the notch, becoming coarser towards the extremes of the channel.

A layer of ghost nodes is introduced all around the domain, so that:

1. The eight boundary conditions from the biharmonic equation (NS equations in the streamline formulation) can be satisfied.
2. The Runge phenomenon is avoided near boundaries.
The spatial differential operators are approximated using PHS r^7 with polynomial augmentation up to m-th degree. The expected convergence is $O(h^m)$ for the combustion equations and $O(h^{m-2})$ for the biharmonic equation. V. Bayona, N. Flyer, B. Fornberg. G.A. Barnett, *J. Comput. Phys.* (2017).
Planar adiabatic flame

\[
\begin{align*}
\frac{\partial \theta}{\partial t} + u_p \frac{\partial \theta}{\partial x} &= \Delta \theta + \omega \\
\frac{\partial Y}{\partial t} + u_p \frac{\partial Y}{\partial x} &= \frac{1}{Le} \Delta Y - \omega
\end{align*}
\]

\[x \to -\infty, \quad \theta = Y - 1 = 0, \quad x \to \infty, \quad \theta - 1 = Y = 0\]
Validation and convergence

Planar adiabatic flame, u_p vs Le

Fig 2 V. N. Kurdyumov, Combustion and Flame, 158 (2011)

Figure: u_p vs Le

Fig. 2. Numerical values of factor $u_p = S_i/U_L$ appearing in Eq. (6) plotted as a function of the Lewis number for $\beta = 10$ and $\gamma = 0.7$. These values were kept in the present study.
Validation and convergence

Premixed flame in flat channel

\[
\begin{align*}
\frac{\partial \theta}{\partial t} + Pe \left[u_f(t) + 6m_y (1 - y) \right] \frac{\partial \theta}{\partial x} &= \Delta \theta + Pe^2 \omega \\
\frac{\partial Y}{\partial t} + Pe \left[u_f(t) + 6m_y (1 - y) \right] \frac{\partial Y}{\partial x} &= \frac{1}{Le} \Delta Y - Pe^2 \omega
\end{align*}
\]

\[
x \rightarrow -\infty, \quad \theta = Y - 1 = 0, \quad x \rightarrow \infty, \quad \frac{\partial \theta}{\partial x} = \frac{\partial Y}{\partial x} = 0
\]

\[
y = 0, \quad \frac{\partial \theta}{\partial y} = \frac{\partial Y}{\partial y} = 0, \quad y = 1, \quad \frac{\partial \theta}{\partial y} = \frac{\partial Y}{\partial y} = 0
\]
Multiplicity of steady states: $Le = 0.7$, $m = 2$

Figure: Symmetric (left) and non-symmetric (right) steady states.
Flat channel, u_f vs m

Fig 2 V. N. Kurdyumov, Combustion and Flame, 158 (2011)

Fig 3. Computed flame velocity $u_f = \frac{U_f}{S_L}$ as a function of the non-dimensional flow rate $m = \frac{U_0}{S_L}$ for several values of Le and $d = 20$; solid lines – symmetric flames; dashed lines – non-symmetric flames; the symbol • marks – the bifurcation points; the symbol ○ – the critical flashback points.

Figure: u_f vs m
Convergence

Convergence vs. h using polynomials of degree 2, 4, 6.

Figure: Convergence for $Le = 1$, compares against a solution obtained with $N = 310,209$.
Numerical experiments

1. Introduction
2. Mathematical model
3. Numerical implementation
4. Validation and convergence
5. Numerical experiments
6. Conclusions
Parameters

Table:

<table>
<thead>
<tr>
<th>h_m</th>
<th>h</th>
<th>Δt</th>
<th>L_0</th>
<th>L_f</th>
<th>a</th>
<th>b</th>
<th>x_{ig}</th>
<th>y_{ig}</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.025</td>
<td>2×10^{-6}</td>
<td>-6</td>
<td>10</td>
<td>0.75</td>
<td>3</td>
<td>-1.25</td>
<td>0.2</td>
<td>0.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>m</th>
<th>Pe</th>
<th>Pr</th>
<th>Le</th>
<th>Ze</th>
<th>γ</th>
<th>κ</th>
<th>θ_m</th>
<th>θ_{ig}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>0.7</td>
<td>1</td>
<td>7</td>
<td>0.7</td>
<td>-100</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Isothermal, $V = 2$, $m = 2$, $x_{ig} = -1.25$, $y_{ig} = 0.2$
Numerical experiments

Isothermal vs Adiabatic, $V = 2$, $m = 2$, $x_{ig} = -1.25$, $y_{ig} = 0.2$
Isothermal, $V = 2, \ m = 2, \ y_{ig} = 0.2$

$x_{ig} = -1.25$

$x_{ig} = -1.0$
Hot spot location for anchored flame

Figure: Each line separates locations of the hot spot for which the flame gets anchored (to the left) from locations in which it is blown up. Solid line: $m = 4$, $V = 0$. Dotted line: $m = 2$, $V = 2$. Dashed line: $m = 2$, $V = 0$. Dot-dashed line: $m = 2$, $V = -2$.
Introduction

Mathematical model

Numerical implementation

Validation and convergence

Numerical experiments

Conclusions
Conclusions

- Simplified model of time dependent combustion in microcombustor
- Model has been validated by computing flame velocity in a channel
- Polyharmonic splines with polynomial augmentation of m-th degree results in $O(h^m)$ convergence for steady solution
- Semi-implicit CN-AB2 for time integration
- Model yields information regarding
 - attachment of flame
 - location of hot spot for successful ignition
 - length of flame
 - fuel likeage
 - inner or outer notch, ...