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Introduction

Micro rotary engine

Figure : Sketch of a micro-rotary engine from the Micro-Rotary Combustion Lab, University of
California, Berkeley.
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Introduction

Microscale combustion

nano and micro technology devices require compact and rechargeable power supplies

at present these devices rely on batteries

but energy density of batteries is very low:
0.7 MJ/kg for lithium-ion batteries
several hours to recharge

possible alternative: micro-engines
hydrocarbon fuels have 45 MJ/Kg of stored chemical energy
an efficiency of 5% in converting this energy to electricity will outperform batteries

small-scale rotary engine (Fernández-Pello, 2002)
high specific power
low cost due to: minimum number of moving parts and no valves required for operation
mechanical shaft output can be directly coupled to electric motor
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Mathematical model

Model

Combustion chamber is approximated by a 2D channel.

Bottom wall moves with velocity ±V relative to the other.

Upper wall has a notch which modifies the combustible flow and facilitates the
attachment of the flame.

The velocity profile at the inlet is the sum of a Poiseuille flow and a Couette flow.

When the mixture flows through the channel, a recirculation zone appears due to
the notch.

If the mixture is ignited, a steady flame might be established in the channel.

Its structure and location depends on the flow rate which determines the attachment
position, among other parameters.
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Mathematical model

Micro rotary engine: flow results
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Figure : Channel configurations for an inner notch (up) and an outer notch (down). The flow
field is illustrated by selected streamlines.
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Mathematical model

m = 2, wall velocity V = −0.5.
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Mathematical model

m = 2, wall velocity V = −0.5.

vorticity
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Mathematical model

m = 2, wall velocity V = −0.5.
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Mathematical model

m = 2, wall velocity V = −0.5.
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Mathematical model

Parameters

m mass flow

Pr = 0.7 Prandlt number

Pe Peclet number

Re = Pe/Pr Reynolds number

Ze = 10 Zeldovich number

up = up(Le) SL/UL

γ = 0.7 heat release parameter

V wall velocity

κ heat loss coefficient

θm temperature in combustion chamber
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Mathematical model

Thermo-diffusive model of flame propagation

The flow is assumed to be independent of the combustion, and is described by the
continuity and momentum equations ∇ · u = 0

(u · ∇) u = −∇p +
1

Pe Pr
∇2u

(1)

The propagation of premixed flames subject to the previous flow is described by
∂θ

∂t
+ Pe (u · ∇) θ = ∇2θ + Pe2 ω (θ,Y )

∂Y

∂t
+ Pe (u · ∇)Y =

1

Le
∇2Y − Pe2 ω (θ,Y )

(2)

where θ is the temperature, Y is the fuel mass fraction and ω(θ,Y ) is the reaction rate,

ω (θ,Y ) =
Ze 2

2 Le u2
p
Y exp

[
Ze (θ − 1)

1 + γ (θ − 1)

]
. (3)
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Mathematical model

Boundary conditions

y = 0 : u = V , v = 0,
∂θ

∂~n
= κPe (θ − θm),

∂Y

∂~n
= 0,

y = ys(x) : u = v = 0,
∂θ

∂~n
= 0,

∂Y

∂~n
= 0.

x → −∞,

 u(y) = −6my 2 + (6m − V )y + V , v = 0

Y = 1, θ = θm

x → +∞, ∂u

∂x
=
∂v

∂x
= 0,

∂Y

∂x
=
∂θ

∂x
= 0.
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Mathematical model

Domain and initial conditions

Channel length: [L0, Lf ]. Width = 1. Upper boundary:

ys(x) = 1 + ae−bx2

, (4)

where a and b control the depth and width of the notch.
Initial conditions:

Hot spot:

θ(0) = θig e
−r2/δ2

, r 2 = (x − xig )2 + (y − yig )2

Y (0) = 1
(5)

where xig , yig , θig and δ are parameters that define the location, intensity and decay
rate of the initial hot spot

Planar flame speed in channel (for a = 0):

Y (0) = 1/
(

1 + ec(x+1)
)

θ(0) = θm + (1− θm)(1− Y (x))
(6)
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Numerical implementation

Navier-Stokes equations

Stream function formulation,

u =
∂ψ

∂y
, v = −∂ψ

∂x
;

the Navier-Stokes equations take the form

∆2ψ + PePr

[
∂ψ

∂x

∂∆ψ

∂y
− ∂ψ

∂y

∂∆ψ

∂x

]
= 0 (7)

with boundary conditions

y = 0 : ψ = 0,
∂ψ

∂~n
= V .

y = ys(x) : ψ = m + V /2,
∂ψ

∂~n
= 0.

As x → −∞,

ψ(y) = −2my 3 + (3m − V /2)y 2 + Vy ,
∂ψ

∂x
= 0. (8)

As x → +∞,

∂2ψ

∂x∂y
= 0;

∂2ψ

∂x2
= 0. (9)
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Numerical implementation

Navier-Stokes equations

Equation (7) is solved with Newton’s method.

Initial approximation ψ(0)

at each iteration compute ψ(i) = ψ(i−1) + ξ, where the correction ξ is the solution of

∆2ξ+PePr

[
∂ψ(i−1)

∂x

∂∆ξ

∂y
− ∂ψ(i−1)

∂y

∂∆ξ

∂x
+
∂ξ

∂x

∂∆ψ(i−1)

∂y
− ∂ξ

∂y

∂∆ψ(i−1)

∂x

]
= R

(
ψ(i−1)

)
,

(10)

with boundary conditions
Bξ = g(x , y)− Bψ(i−1). (11)

R
(
ψ(i−1)

)
is the residual at iteration i

R
(
ψ(i−1)

)
= ∆2ψ(i−1) + PePr

[
∂ψ(i−1)

∂x

∂∆ψ(i−1)

∂y
− ∂ψ(i−1)

∂y

∂∆ψ(i−1)

∂x

]
, (12)

iterations continue until
∥∥∥R (ψ(i−1)

)∥∥∥ ≤ ε
RBF-FD with polynomial augmentation is used to discretize differential operators.

at each iteration equations (10) are solved using a direct solver.

Kindelan, Bayona (UC3M) Microcombustor May 16 19 / 38



Numerical implementation

Combustion equations

∂θ

∂t
=

[
∇2 − Pe (u · ∇)

]
θ + Pe2 · ω (θ,Y )

∂Y

∂t
=

[
1

Le
∇2 − Pe (u · ∇)

]
Y − Pe2 · ω (θ,Y )

(13)

Spatial differential operators: are discretized (in a preprocessing step) using RBF-FD
augmented with polynomials. ⇒ sparse differential matrices

Dθ = ∇2 − Pe (u · ∇) ,

DY =
1

Le
∇2 − Pe (u · ∇) .
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Numerical implementation

Combustion equations

Time integration: semi-implicit CN-AB2 (implicit for the linear terms and explicit for
the non-linear terms).(

I − ∆t

2
Dθ

)
θk+1 =

(
I +

∆t

2
Dθ

)
θk +

∆t

2
·
(

3G k − G k−1
)

(
I − ∆t

2
DY

)
Y k+1 =

(
I +

∆t

2
DY

)
Y k − ∆t

2
·
(

3G k − G k−1
) (14)

(14) together with boundary conditions, are solved at each time step using iterative
solver BiCGSTAB with iLU as preconditoner. G k representes the non-linear term

G k = Pe2 · ω(θk ,Y k).

Iterations continue until
∥∥θk − θk−1

∥∥ ≤ tol and
∥∥Y k − Y k−1

∥∥ ≤ tol (tol = 10−8).
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Numerical implementation Domain discretization:

Domain discretization:

The domain is discretized using scattered nodes with an inter-nodal distance ∆
controlled by a predefined function

∆ = h + (hm − h) [1/(1 + exp(2(x + 3))) + 1/(1 + exp(−(x − 3)))] , (15)

where hm and h are the inter-nodal distances away and near the notch, respectively.
Ideally, a fine node distribution is used near the notch, becoming coarser towards the
extremes of the channel.
A layer of ghost nodes is introduced all around the domain, so that:

1 the eight boundary conditions from the biharmonic equation (NS equations in the
streamline formulation) can be satisfied.

2 The Runge phenomenon is avoided near boundaries.
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Numerical implementation Domain discretization:
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The spatial differential operators are approximated using PHS r 7 with polynomial
augmentation up to m-th degree. The expected convergence is O(hm) for the
combustion equations and O(hm−2) for the biharmonic equation. V. Bayona, N. Flyer, B.
Fornberg. G.A. Barnett, J. Comput. Phys. (2017).
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Validation and convergence

Planar adiabatic flame


∂θ

∂t
+ up

∂θ

∂x
= ∆θ + ω

∂Y

∂t
+ up

∂Y

∂x
=

1

Le
∆Y − ω

x → −∞, θ = Y − 1 = 0 , x →∞, θ − 1 = Y = 0
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Validation and convergence

Planar adiabatic flame, up vs Le

Fig 2 V. N. Kurdyumov, Combustion and Flame, 158 (2011)
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Figure : up vs Le
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Validation and convergence

Premixed flame in flat channel


∂θ

∂t
+ Pe [uf (t) + 6my (1− y)]

∂θ

∂x
= ∆θ + Pe2 ω

∂Y

∂t
+ Pe [uf (t) + 6my (1− y)]

∂Y

∂x
=

1

Le
∆Y − Pe2 ω

x → −∞, θ = Y − 1 = 0 , x →∞, ∂θ

∂x
=

∂Y

∂x
= 0

y = 0,
∂θ

∂y
=

∂Y

∂y
= 0 , y = 1,

∂θ

∂y
=

∂Y

∂y
= 0
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Validation and convergence

Multiplicity of steady states: Le = 0.7, m = 2

Figure : Symmetric (left) and non-symmetric (right) steady states.
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Validation and convergence

Flat channel, uf vs m

Fig 2 V. N. Kurdyumov, Combustion and Flame, 158 (2011)
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Figure : uf vs m
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Validation and convergence

Convergence

Convergence vs. h using polynomials of degree 2, 4, 6.
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Figure : Convergence for Le = 1, compares against a solution obtained with N = 310,209.
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Numerical experiments
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Numerical experiments

Parameters

Table :

hm h ∆t L0 Lf a b xig yig δ

0.05 0.025 2 10−6 -6 10 0.75 3 -1.25 0.2 0.15

V m Pe Pr Le Ze γ κ θm θig

2 2 10 0.7 1 7 0.7 -100 0 1
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Numerical experiments

Isothermal, V = 2, m = 2, xig = −1.25, yig = 0.2

(Loading.mp4) (Loading.mp4)
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V_2_m_2_x_m125_y_02_new3_iso.mp4
Media File (video/mp4)


V_2_m_2_x_m125_y_02_new3_iso_Y.mp4
Media File (video/mp4)



Numerical experiments

Isothermal vs Adiabatic, V = 2, m = 2, xig = −1.25, yig = 0.2

(Loading.mp4) (Loading.mp4)

Kindelan, Bayona (UC3M) Microcombustor May 16 34 / 38


V_2_m_2_x_m125_y_02_new3_iso.mp4
Media File (video/mp4)


V_2_m_2_x_m125_y_02_adiab.mp4
Media File (video/mp4)



Numerical experiments

Isothermal, V = 2, m = 2, yig = 0.2

(Loading.mp4)

xig = −1.25

(Loading.mp4)

xig = −1.0
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V_2_m_2_x_m125_y_02_new3_iso.mp4
Media File (video/mp4)


V_2_m_2_x_m1_y_02_new3_iso.mp4
Media File (video/mp4)



Numerical experiments

Hot spot location for anchored flame
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Figure : Each line separates locations of the hot spot for which the flame gets anchored (to the
left) from locations in which it is blown up. Solid line: m = 4, V = 0. Dotted line: m = 2,
V = 2. Dashed line: m = 2, V = 0. Dot-dashed line: m = 2, V = −2.
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Conclusions

Conclusions

Simplified model of time dependent combustion in microcombustor

Model has been validated by computing flame velocity in a channel

Polyharmonic splines with polynomial augmentation of m-th degree results in O(hm)
convergence for steady solution

Semi-implicit CN-AB2 for time integration

Model yields information regarding
attachment of flame
location of hot spot for successful ignition
length of flame
fuel likeage
inner or outer notch, . . .
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